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Abstract—The Maximum Likelihood Probabilistic Data Asso-
ciation (ML-PDA) tracker and the Maximum Likelihood Proba-
bilistic Multi-Hypothesis (ML-PMHT) tracker are tested in their
capacity as algorithms for very low observable targets (VLO,
meaning 6 dB post-signal-processing or even less) and are then
applied to five synthetic benchmark multistatic active sonar
scenarios featuring multiple targets, multiple sources and multiple
receivers. Both methods end up performing well in situations
where there is a single target or widely-spaced targets. However,
ML-PMHT has an inherent advantage over ML-PDA in that
its likelihood ratio has a simple multitarget formulation, which
allows it to be implemented as a true multitarget tracker. This
formulation gives ML-PMHT superior performance for instances
where multiple targets are closely spaced with similar motion
dynamics.
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I. INTRODUCTION

The Maximum Likelihood Probabilistic Data Association
(ML-PDA) tracker and the Maximum Likelihood Probabilistic
Multi-Hypothesis (ML-PMHT) tracker are both algorithms that
can be used in an active multistatic sonar framework. With
some basic assumptions about a target (or targets) as well
as the environment, likelihood ratios can be developed for
both algorithms and then maximized to obtain target motion
parameter estimates. The main difference between the two
algorithms is in the measurement-to-target assignment model;
ML-PDA assumes that at most one measurement per scan
can originate from a target, while ML-PMHT allows for any
number of measurements to have originated from a target.
While this assumption may reduce the appeal of ML-PMHT to
some, the resulting algorithm does offer a significant advantage
in terms of its multitarget formulation.

The concept behind ML-PDA was first introduced in [4],
while the ideas behind ML-PMHT originated in [2], [9], [10],
and [11]. The assumptions used to develop the ML-PDA and
ML-PMHT algorithms are covered in detail in [8]; we merely
summarize the results here. This work began in [6], which
implemented both ML-PDA and ML-PMHT as sequential
single-target trackers. In [8], ML-PMHT was for the first time
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implemented as a true multitarget tracker. This paper is a
condensed version of that work. The ML-PDA log-likelihood
ratio (LLR) for a batch of data is

Λ(x, Z) =

Nw∑
i=1

ln

{
1 − Pd +

Pd

λ

mi∑
j=1

p[zj(i)|x]ρj(i)

}
(1)

where Pd is the target probability of detection in a scan, λ is
the spatial clutter density, Nw is the number of scans, mi is
the number of measurements in the ith scan, zj(i) is the jth

measurement in the ith scan, p[zj(i)|x] is a target-centered
Gaussian, ρj(i) is the amplitude likelihood ratio, x is the
target state motion parameter1, and Z is the (entire) set of
measurements in the batch. The ML-PMHT LLR is given by

Λ′(x, Z) =

Nw∑
i=1

mi∑
j=1

ln

{
π0 + π1V p[zj(i)|x]ρj(i)

}
(2)

where π0 is the prior probability that a measurement is from
clutter, π1 is the prior probability that a measurement is from
the target, and V is the search volume in the measurement
space. The ML-PMHT algorithm has an advantage over ML-
PDA in that its LLR can be expressed naturally in multitarget
form. This is given as

Λ†(x, Z) =

Nw∑
i=1

mi∑
j=1

ln

{
π0 + V

K∑
k=1

πkp[zj(i)|xk]ρjk(i)

}

(3)
where πk is the probability that a given measurement is from

the kth target and
∑K

k=0 πk = 1.

Additionally in [8], an expression was developed for the
Cramér-Rao Lower Bound (CRLB) for ML-PMHT, and it
was shown that the ML-PMHT estimator is efficient, so the
CRLB can be used to represent the covariance C of the
estimated target parameter vector. This CRLB is computed by
first calculating the Fisher Information Matrix (FIM) Ji for a
single data scan

Ji = D
T
φ

mi∑
j=1

G
T
j

∫
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1The target motion is assumed to be described by the parameter x, i.e. it
is modeled as noiseless (without process noise) in the window of Nw scans.
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where Dφ is the Jacobian of the measurement function φ
with respect to the parameter x, Rj is the measurement noise
covariance for the jth measurement, and Gj is the Cholesky

factor of R
−1
j . Finally, pτ

1 and pτ
0 are the amplitude likelihoods

for the target and clutter, respectively. The FIM for a batch of
data is simply the sum of the FIMs for each scan in the batch,
and then the CRLB covariance C is just the inverse of the
batch FIM.

The ML-PDA LLR in (1) is for a single target only. In order
to make this algorithm function as a multi-target tracker, it is
necessary to implement it in a sequential single-target mode.
This is done by maximizing the LLR for a batch of data. If
this LLR at the optimum point exceeds a certain threshold, a
track is declared. Next, the measurement in each scan that has
the greatest probability of being associated with the target is
excised from the data. The LLR is then maximized again on
the new batch of data, and the process is repeated until no
more tracks can be found. This approach worked reasonably
well for multiple targets in past work [7].

In contrast, ML-PMHT has a natural multitarget formula-
tion (3). The ML-PMHT multitarget tracking framework was
implemented in two steps. The first was the single track extrac-
tion sequence and testing all extracted tracks for “closeness.”
In the second step, any tracks that were determined to be close
were grouped together and optimized with the multitarget ML-
PMHT log-likelihood ratio formulation in (3). Grouping tracks
involved estimating the state covariance of all existing tracks.
We let the CRLB shown above represent the state covariance
Cn for the nth target, and with this, a χ2 test statistic [3]
is evaluated for closeness between all possible pairs of active
tracks in the form

Smn = Δx̂
T
mn(Cm + Cn)−1Δx̂mn (5)

where Δx̂mn = x̂m − x̂n (the difference of the parameter
vector estimates between the mth and nth track). All track
pairs with a statistic Smn less than a given threshold are
grouped together. More than two tracks could belong to a
group by the use of this association — to join a group, an
ungrouped track only had to meet the test described in (5)
with one of the tracks already in the group.

II. SIMULATION DESCRIPTIONS

Five benchmark multistatic sonar scenarios, initially devel-
oped in [6], were used to measure performance differences
between ML-PDA and ML-PMHT with Monte Carlo testing.
Each scenario was designed so target detections from a sin-
gle source-receiver pair would be present approximately 80
percent of the time in a given scan, and clutter was set at a
level that made the problem as difficult as possible while not
slowing down run times to the point of precluding Monte Carlo
testing. The clutter amplitude in the five scenarios was given
a K-distribution [1]. Scenario 1 was also run with Rayleigh-
distributed clutter [5] in a relatively high-clutter environment.
The various scenario parameters are listed in Table I (these
parameters, used in the simulation, were also matched in the
actual ML-PDA and ML-PMHT tracking code). All scenarios
are shown in Figures 3–14. (For clarity, we note that this
sequence of figures is used both in this section to illustrate
the geometries used and in Section III to provide examples
of individual results.) Each of the scenario target geometries

was designed for a specific test purpose. Then, given these
target geometries, the sensors were laid out in an effort to
obtain an average target Pd of 0.8 in any given scan. (The
one exception to this occurs in Scenario 5 and is described
below.) The pinging strategy was purposely kept very simple
— every transmitter had a (simulated) ping every 60 seconds.
The scenarios are described as follows:

1) Baseline Scenario: Scenario 1, shown in Figure 3,
featured a single target moving in a straight line past a source
and a receiver (the source was a receiver as well). This was
intentionally created as one of the simplest possible multistatic
scenarios. In theory, ML-PDA and ML-PMHT should converge
to the same value under benign conditions (this is shown in
detail in [8]), and this scenario is a case where this convergence
should hold true.

2) Close Targets with Similar Dynamics Scenario: Sce-
nario 2, shown in Figure 5, features three targets very close
together (they have a separation of only 500 distance units)
with similar motion dynamics – i.e. they are maneuvering
in a coordinated fashion. This makes it very difficult for
any algorithm to distinguish and separate targets from each
other. This will test if the multitarget implementation for ML-
PMHT is an improvement over the sequential single-target
implementation of ML-PDA.

3) Close Targets with Different Dynamics Scenario: Sce-
nario 3, shown in Figure 7, has two targets closing each other
from the east and west. During the middle of the scenario, the
targets will be in close proximity to each other, but they will
have different motion dynamics — at the time they are close,
they will be moving in opposite directions. (Although the
targets have the same course after the right-hand target’s course
change, they are not close to each other after the maneuver.)
Again, this is designed to test each tracker’s ability to follow
close targets, but under slightly easier circumstances than in
scenario 2.

4) Large Number of Targets Scenario: Scenario 4, shown
in Figure 9, features ten very low-speed targets and three rel-
atively high-speed targets. This scenario was designed simply
to measure each algorithm’s ability to track a (relatively) large
number of targets, especially when some of those targets are
low-speed and exhibit very low Doppler.

5) Switching Targets Scenario: Scenario 5, shown in Figure
11, is similar to scenario 2 in that it has two targets in
close proximity to each other with the same motion dynamics.
However, the targets start out with a distinct separation and
then close on each other. At the point where the targets are
about to intersect, they turn and parallel each other. Such
motion, with the targets approaching each other (where their
projected motion has them crossing), will make it very difficult
for any trackers continually to associate measurements with
the correct targets and not to switch targets. Additionally, this
scenario was given a relatively high number of receivers (16),
and due to the geometry, most source receiver pairs will have a
Pd of much less than 0.8 — many scans will just have clutter
measurements. This is effectively raising the clutter levels that
the tracker will see.

These scenarios were all run using the ML-PDA target
measurement generation model, where the target produced
at most one measurement per scan. Scenario 1 was then
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excised by track 1
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excised by track 2
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Low SNR measurement

Target Motion (for all three targets)

Figure 15. Example of multitrack measurement assignment for ML-PDA

Track 1 Track 2 Track 3

Target Motion (for all three targets)

High SNR measurement Medium SNR measurement

Low SNR measurement

Figure 16. Example of multitrack measurement assignment for ML-PMHT

4 for almost all of the targets for similar reasons. (Results
from only targets 7 and 12 are shown below; they are fairly
representative of all 13 targets in this scenario). Again, the
sequential single target tracking framework for ML-PDA could
not perform as well as the true multitarget implementation
for ML-PMHT. Tracks using the ML-PDA implementation
were far more susceptible to being drawn off from one target
to another by high-SNR measurements (similar to the effect
illustrated in Figure 15). Compare the performance of ML-
PDA on this scenario in Figure 9 with the performance of ML-
PMHT in Figure 10. Several instances of track switching are
visible in the ML-PDA plot that are not seen in the ML-PMHT
plot. While this switching is not between targets with similar
dynamics (as happens with Scenarios 2 and 5), it is happening
with targets that are moving very slowly. As a result, there are
no dynamics — either evolving position over time or Doppler
— to differentiate measurements between two targets.

All the simulations up to this point were performed using
the ML-PDA target measurement generation model — that

Table II. IN-TRACK PERCENTAGE RESULTS

ML-PDA ML-PMHT

mean conf. int. mean conf. int.

(95 percent) (95 percent)

Scenario 1 95.4 [94.8, 96.0] 95.4 [94.8, 96.0]

Scenario 2 Tgt 1 12.0 [7.5, 16.6] 83.9 [79.6, 88.2]

Scenario 2 Tgt 2 100 [100, 100] 87.5 [83.7, 91.3]

Scenario 2 Tgt 3 1.9 [0.0, 3.8] 53.1 [46.5, 59.7]

Scenario 3 Tgt 1 82.7 [81.0, 84.4] 82.5 [81.0, 84.0]

Scenario 3 Tgt 2 76.1 [74.2, 78.0] 77.1 [75.4, 78.9]

Scenario 4 Tgt 7 61.0 [54.7, 67.4] 91.1 [89.3, 92.8]

Scenario 4 Tgt 12 52.5 [45.9, 59.2] 96.3 [95.9, 96.8]

Scenario 5 Tgt 1 45.3 [38.4, 52.2] 63.1 [56.5, 69.7]

Scenario 5 Tgt 2 48.4 [41.5, 55.4] 63.7 [57.1, 70.2]

Scenario 1 Rayleigh 66.9 [66.0, 67.8] 67.4 [66.6, 68.3]

Table III. RMSE RESULTS

ML-PDA ML-PMHT

mean conf. int. mean conf. int.

(95 percent) (95 percent)

Scenario 1 255.8 [229.7, 281.9] 259.2 [233.0, 285.4]

Scenario 2 Tgt 1 313.4 [257.7, 369.0] 281.4 [267.7, 295.1]

Scenario 2 Tgt 2 247.0 [241.9, 252.1] 280.5 [269.6, 291.5]

Scenario 2 Tgt 3 228.4 [186.7, 270.0] 212.4 [202.3, 222.4]

Scenario 3 Tgt 1 1227.3 [1190.2, 1264.3] 946.6 [904.4, 988.8]

Scenario 3 Tgt 2 799.7 [754.6, 844.8] 878.0 [836.1, 920.0]

Scenario 4 Tgt 7 391.3 [303.8, 478.8] 321.6 [274.5, 377.7]

Scenario 4 Tgt 12 151.6 [124.0, 179.2] 213.2 [177.2, 249.3]

Scenario 5 Tgt 1 213.1 [173.3, 252.8] 244.7 [207.1, 282.2]

Scenario 5 Tgt 2 272.5 [211.3, 333.7] 245.6 [215.2, 276.1]

Scenario 1 Rayleigh 217.6 [191.7, 243.6] 182.4 [166.4, 198.9]

Table IV. FRAGMENTATION RESULTS

ML-PDA ML-PMHT

mean conf. int. mean conf. int.

(95 percent) (95 percent)

Scenario 1 0.01 [0.00, 0.02] 0.01 [0.00, 0.02]

Scenario 2 Tgt 1 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

Scenario 2 Tgt 2 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

Scenario 2 Tgt 3 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

Scenario 3 Tgt 1 0.03 [0.01, 0.06] 0.07 [0.03, 0.10]

Scenario 3 Tgt 2 0.24 [0.17, 0.30] 0.06 [0.02, 0.09]

Scenario 4 Tgt 7 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

Scenario 4 Tgt 12 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

Scenario 5 Tgt 1 0.15 [0.07, 0.22] 0.15 [0.09, 0.22]

Scenario 5 Tgt 2 0.09 [0.03, 0.15] 0.15 [0.08, 0.22]

Scenario 1 Rayleigh 0.07 [0.03, 0.10] 0.05 [0.02, 0.08]

Table V. DUPLICATE TRACK RESULTS

ML-PDA ML-PMHT

mean conf. int. mean conf. int.

(95 percent) (95 percent)

Scenario 1 0.18 [0.13, 0.24] 0.02 [0.00, 0.04]

Scenario 2 Tgt 1 0.00 [0.00, 0.00] 0.04 [0.01, 0.08]

Scenario 2 Tgt 2 1.07 [1.01, 1.14] 0.48 [0.39, 0.57]

Scenario 2 Tgt 3 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

Scenario 3 Tgt 1 0.03 [0.01, 0.06] 0.07 [0.03, 0.10]

Scenario 3 Tgt 2 0.24 [0.17, 0.30] 0.06 [0.02, 0.09]

Scenario 4 Tgt 7 0.00 [0.00, 0.00] 0.09 [0.05, 0.13]

Scenario 4 Tgt 12 0.09 [0.03, 0.14] 0.18 [0.12, 0.24]

Scenario 5 Tgt 1 0.04 [0.00, 0.08] 0.13 [0.07, 0.19]

Scenario 5 Tgt 2 0.02 [0.00, 0.05] 0.11 [0.05, 0.16]

Scenario 1 Rayleigh 2.10 [1.83, 2.37] 0.00 [0.00, 0.00]



Table VI. FALSE TRACK RESULTS

ML-PDA ML-PMHT

mean conf. int. mean conf. int.

(95 percent) (95 percent)

Scenario 1 0.07 [0.03, 0.11] 0.07 [0.03, 0.11]

Scenario 2 0.06 [0.03, 0.09] 0.15 [0.15, 0.21]

Scenario 3 0.34 [0.26, 0.42] 0.26 [0.19, 0.33]

Scenario 4 0.17 [0.10, 0.23] 0.14 [0.09, 0.20]

Scenario 5 2.13 [1.92, 2.34] 2.65 [2.44, 2.86]

Scenario 1 Rayleigh 0.08 [0.02, 0.14] 0.00 [0.00, 0.00]

Table VII. FALSE TRACK LENGTH RESULTS

ML-PDA ML-PMHT

mean conf. int. mean conf. int.

(95 percent) (95 percent)

Scenario 1 3.14 [2.59, 3.69] 3.14 [2.56, 3.73]

Scenario 2 2.75 [2.31, 3.19] 3.37 [2.81, 3.92]

Scenario 3 4.34 [3.18, 5.50] 4.42 [3.32, 5.62]

Scenario 4 6.75 [3.72, 9.78] 11.67 [7.81, 15.52]

Scenario 5 8.98 [7.81, 10.16] 8.55 [7.59, 9.51]

Scenario 1 Rayleigh 3.58 [2.39, 4.78] 0.00 [0.00, 0.00]

is, at most one measurement was generated by the target
in any given scan. In this condition, ML-PMHT and ML-
PDA had identical performance in the single-target cases, and
ML-PMHT outperformed ML-PDA in the small-separation
multitarget cases. We now round out the comparison between
the two algorithms by considering what happens when the
ML-PMHT target measurement generation model is used to
generate the data and more than one measurement is allowed
to originate from the target (this could happen, for example,
in an environment that supported multipath propagation).

In order to do this, Scenario 1 (with K-distributed clutter)
was re-run for one, two and three expected target returns per
scan. Results for all metrics were virtually the same between
the algorithms (and similar to results shown above for Scenario
1), with the exception of the number of duplicate tracks. These
results are shown in Table VIII. Here, ML-PDA, as expected,
suffers from an increasing number of duplicate tracks as N , the
expected number of target measurements per scan, is increased.
In contrast, ML-PMHT basically has on average no duplicate
tracks for any number of target measurements per scan. With
this model of target-measurement generation, ML-PMHT is
the superior algorithm.

Table VIII. NUMBER OF DUPLICATE TRACKS AS A FUNCTION OF N ,
THE EXPECTED NUMBER OF TARGET MEASUREMENTS PER SCAN

ML-PDA ML-PMHT

N mean confidence interval mean confidence interval

(95 percent) (95 percent)

1 1.32 [1.21, 1.43] 0.03 [0.00, 0.05]

2 4.05 [3.88, 4.23] 0.04 [0.01, 0.06]

3 6.12 [5.92, 6.31] 0.09 [0.05, 0.13]

IV. CONCLUSIONS

We developed a true multitarget implementation of ML-
PMHT, and compared it to the legacy sequential single-target
ML-PDA algorithm with Monte Carlo testing. This testing

first showed that ML-PDA and ML-PMHT are effective very
low observable (i.e. received target SNR less than 12 dB)
trackers, working down to an expected target SNR of 4-5
dB. After this, the ML-PDA and the ML-PMHT tracking
algorithms were applied to five different benchmark scenarios
with Monte Carlo trials using a target measurement generation
model of zero or one measurements originating from the
target in a scan. For scenarios with a single target or multiple
targets with measurements that could easily be differentiated
by dynamics, the performances of ML-PDA and ML-PMHT
were identical — ML-PMHT did not suffer from the fact
that its measurement assignment model did not match the
actual target measurement generation model. In cases with
closely-spaced targets with measurements that could not be
differentiated easily by dynamics, ML-PMHT outperformed
ML-PDA due to the fact that the former had a true multitarget
LLR formulation, while the latter had to handle multiple
targets in a sequential single-target mode. Finally, when the
target measurement generation model was switched to that
of ML-PMHT, with multiple measurements per scan being
generated by the target, ML-PMHT outperformed ML-PDA in
terms of the number of duplicate tracks generated. Overall, the
performance of ML-PMHT makes it the preferred algorithm.
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